
SSooffttwwaarree RRee lliiaabbiill iittyy
EEnnggiinneeeerriinngg

SSS IIITTTAAARRRAAA TTTeeeccchhhnnniiicccaaalll RRReee pppooorrrtttsss

SSSIIITTTAAARRRAAA SSSRRREEE///JJJAAANNN 222000000111

 SSSIIITTTAAARRRAAA TTTeeeccchhhnnnooolllooogggiii eeesss PPPrrriii vvvaaa ttteee LLLiiimmmiii ttteeeddd
NNNOOOTTTEEE ooonnn IIInnnttteeelllllleeeccc tttuuuaaa lll FFFrrr eeeeee dddooommm::: PPPeee rrr mmmiiissssss iiiooonnn iiisss gggrrr aaa nnnttteee ddd tttooo ttthhheee uuusss eeerrr cccooommmmmm uuunnniiitttyyy tttooo llliiibbbeee rrraaa llllllyyy

bbbooorrr rrr ooowww iiidddeeeaaa sss fffooouuunnnddd iiinnn ttthhhiiisss ttteeeccc hhhnnniiicccaaa lll rrr eee pppooorrrttt ... PPPllleee aaasss eee aaa ccckkk nnnooowwwllleee dddgggeee ttthhheee sssooouuurrrccc eee –––
SSSIIITTTAAARRRAAA TTTeee ccchhhnnniii cccaaalll RRReeepppooorrrtttsss... RRREEEFFFEEERRREEENNNCCCEEE::: SSSIIITTTAAARRRAAA SSSRRREEE///JJJAAANNN 222000000111

wwwwwwwww...sssiii tttaaa rrraaattteeeccchhh... cccooommm

111

Abstract:

When the web was conceived, it was primarily designed with capability to display
hypertext with inline images with the capability of linking pages together. Today, web
applications are designed to serve up dynamic content, perform validation of input
data in forms and process this information using databases external to the web
server. And, form processing which uses CGI programming makes use of both
compiled and interpreted languages that come in multiple varieties. Testing of web
applications is an entirely different ball game altogether requiring a very learned team
that is capable of debugging both complied languages such as C, C++, Perl, Java,
and Visual Basic and interpreted languages such as TCL, shell scripts and Javascript.
A manager’s perspective in determining and selecting from the plethora of choices
plays a very crucial role. The paper provides an understanding of how to manage
and handle testing of web applications using good design principles.

1.0 INTRODUCTION

The content that is served up by web applications is truly multimedia with capacities
extending to collecting data, reading and writing information using other applications.
The outcome of this capacity is that information is literally computed real-time using
multiple choices of data that information can take. Now, here is where the traditional
concepts of establishing a lower bound and an upper bound for data for boundary
tests are simply not feasible. Testing of interactive, dynamic data-driven and
information-rich web applications is not a mere extension of traditional testing
paradigms.

The primary difference between a traditional GUI based application and one that is
browser-based is that features have the potential to be exercised in multiple
sessions. This is a useful point to note while ensuring “isolation of features”.

Design for Testability of Web Applications – Manager’s
Perspective

Raghav S. Nandyal
Chief Executive Officer

SITARA Technologies Pvt. Ltd.

3-6-460 ‘Gokul Kunj’, #304 Street No. 5 Himayatnagar Hyderabad AP - 500 029
Email: raghav_nandyal@sitaratech.com

URL: http://www.sitaratech.com

SSooffttwwaarree RRee lliiaabbiill iittyy
EEnnggiinneeeerriinngg

SSS IIITTTAAARRRAAA TTTeeeccchhhnnniiicccaaalll RRReee pppooorrrtttsss

SSSIIITTTAAARRRAAA SSSRRREEE///JJJAAANNN 222000000111

 SSSIIITTTAAARRRAAA TTTeeeccchhhnnnooolllooogggiii eeesss PPPrrriii vvvaaa ttteee LLLiiimmmiii ttteeeddd
NNNOOOTTTEEE ooonnn IIInnnttteeelllllleeeccc tttuuuaaa lll FFFrrr eeeeee dddooommm::: PPPeee rrr mmmiiissssss iiiooonnn iiisss gggrrr aaa nnnttteee ddd tttooo ttthhheee uuusss eeerrr cccooommmmmm uuunnniiitttyyy tttooo llliiibbbeee rrraaa llllllyyy

bbbooorrr rrr ooowww iiidddeeeaaa sss fffooouuunnnddd iiinnn ttthhhiiisss ttteeeccc hhhnnniiicccaaa lll rrr eee pppooorrrttt ... PPPllleee aaasss eee aaa ccckkk nnnooowwwllleee dddgggeee ttthhheee sssooouuurrrccc eee –––
SSSIIITTTAAARRRAAA TTTeee ccchhhnnniii cccaaalll RRReeepppooorrrtttsss... RRREEEFFFEEERRREEENNNCCCEEE::: SSSIIITTTAAARRRAAA SSSRRREEE///JJJAAANNN 222000000111

wwwwwwwww...sssiii tttaaa rrraaattteeeccchhh... cccooommm

222

From an end-user perspective web applications tend to develop a sequential pattern
of execution. In order to enhance the web experience, it is prudent to make sure
that the number of sequential screen transitions achieving an objective from a
feature execution be at a maximum of “3 navigation units”. It is useful to point
out at the outset that the 3 navigation units rule lends well to a “star-topology site
design” as found in [1]. This point will be elaborated further in the paper under
section 3.0.

Form data elements are primarily of two types. One type of data is what is entered
physically, and the other type of data is the dynamically populated form elements
computed based on choices made on other data elements of the form. There is
also a big blessing in separating the production or staging environment (web-server
and the database) and the application environment. So, confidence testing requires
“separation of data types” to confirm overall results from form processing.

The above 3 concepts together with other ideas will be described in the paper after
well tried-out application on numerous testing exercises.

2.0 ISOLATION OF FEATURES

The significant departure from traditional testing techniques and testing web
applications come from the mere explosion of domain knowledge that becomes
necessary for a test engineer. An in depth understanding of client-server
architecture, network security and restrictions, behavior of application components
that might be used such as ActiveX or Java Beans, peculiarities of scripting methods
such as HTML, Dynamic HTML, XML and client side versus server side processing
(ASP, JSP) of the HTML page itself make the role of planning the testing process a
very delicate job. This domain knowledge is essential for designing applications while
keeping isolation of features in mind.

Speaking at a very broad level, the test plan must consider effective separation of
the following:

1. The User Interface testing
2. Database testing and database population methods
3. Network security testing

Much of web application testing is still a manual process. Web rendering of HTML
code is a matter of checking to see how each page (static and dynamic) gets
displayed on the most popular clients (Internet Explorer or Netscape Navigator).
Applications that leverage these thin-clients to serve, as the front-end GUI, must be
tested for rendering on both these clients. A useful design decision to make is to go
for a Star topology of the site and to restrict the number of navigation units to at
most 3 units from the hub being the index page or the homepage.

SSooffttwwaarree RRee lliiaabbiill iittyy
EEnnggiinneeeerriinngg

SSS IIITTTAAARRRAAA TTTeeeccchhhnnniiicccaaalll RRReee pppooorrrtttsss

SSSIIITTTAAARRRAAA SSSRRREEE///JJJAAANNN 222000000111

 SSSIIITTTAAARRRAAA TTTeeeccchhhnnnooolllooogggiii eeesss PPPrrriii vvvaaa ttteee LLLiiimmmiii ttteeeddd
NNNOOOTTTEEE ooonnn IIInnnttteeelllllleeeccc tttuuuaaa lll FFFrrr eeeeee dddooommm::: PPPeee rrr mmmiiissssss iiiooonnn iiisss gggrrr aaa nnnttteee ddd tttooo ttthhheee uuusss eeerrr cccooommmmmm uuunnniiitttyyy tttooo llliiibbbeee rrraaa llllllyyy

bbbooorrr rrr ooowww iiidddeeeaaa sss fffooouuunnnddd iiinnn ttthhhiiisss ttteeeccc hhhnnniiicccaaa lll rrr eee pppooorrrttt ... PPPllleee aaasss eee aaa ccckkk nnnooowwwllleee dddgggeee ttthhheee sssooouuurrrccc eee –––
SSSIIITTTAAARRRAAA TTTeee ccchhhnnniii cccaaalll RRReeepppooorrrtttsss... RRREEEFFFEEERRREEENNNCCCEEE::: SSSIIITTTAAARRRAAA SSSRRREEE///JJJAAANNN 222000000111

wwwwwwwww...sssiii tttaaa rrraaattteeeccchhh... cccooommm

333

3.0 3 NAVIGATION UNITS

A good rule of thumb to use while designing web applications is to minimize the depth
of navigation to a maximum of 3 units. The primary reason for imposing this
constraint is that web applications containing either static or dynamic pages are
intended for maximum usage – in other words better user-experience. It would
almost become a nightmare to navigate, test and validate an ill-conceived site with
numerous pages and navigation links. One of the best strategies is to use a “Star”
navigation style [1]. The Star navigation has a central hub that is the index or the
default page that gets loaded upon a URL (Uniform Resource Locater) or URI
(Uniform Resource Identifier) invocation. Radiating from the central hub are the
different features of the application or the features of the site. It is useful to note
here that in this style, the number of radiating features or functions can be unlimited
and is an extensible design concept. The binding of the 3 navigation units is on each
one of these radiating spokes. The hub or the index page is only 3 clicks away –
always! Designing applications and sites in the “Star-Site Topology” has been found
to contribute tremendously to a reduction in time spent on both system and
integration testing effort. Using forms to capture information and rendering the
validation along with the form data or information processing is ideally a 3-step
process again. First with the user providing the necessary data or information on the
form. Second, script validation of field data for integrity. And finally execute the form
information on a web-server and, return of appropriately processed information to
the user. So, making a design decision to restrict the navigation units to 3 units is not
going to hinder form processing in any way. Star-site topology adds to the benefits
of extendibility and scalability of the site architecture. The emphasis in this point is to
ensure modularity of functions placed on the radiating hubs representing the
features of functions of the application or the site. When applications such as
financial processing systems [2] need to be developed, it is useful to separate the
form entry, processing and subsequent transactions into two separate partitions or
identities. The 3-navigation units rule can now be applied to each one of these two
separate partitions or identities. There are many advantages with this partitioning.
Should you want to either expire a page (in secure http transactions using https
protocol) or if you want to display forms with related user inputs, they can easily be
isolated into two separate functions one set of transactions based on the results
from the previous set of inputs from the main hub. The benefit with this design is
that a sophisticated (secure) system design can be limited to just two browser
windows. Most designs that have been ill conceived and have the further
disadvantage of poorly lending themselves to testability are seen to spawn browser
sessions in gay abandon. It is both frustrating to test and also a frustrating user
experience! This partitioning that is suggested of features into 2 entities at the most
leads into the next topic, which is “separation of data types”. Many secure
applications have to be conceived with built -in timeouts for non-usage in a session.

SSooffttwwaarree RRee lliiaabbiill iittyy
EEnnggiinneeeerriinngg

SSS IIITTTAAARRRAAA TTTeeeccchhhnnniiicccaaalll RRReee pppooorrrtttsss

SSSIIITTTAAARRRAAA SSSRRREEE///JJJAAANNN 222000000111

 SSSIIITTTAAARRRAAA TTTeeeccchhhnnnooolllooogggiii eeesss PPPrrriii vvvaaa ttteee LLLiiimmmiii ttteeeddd
NNNOOOTTTEEE ooonnn IIInnnttteeelllllleeeccc tttuuuaaa lll FFFrrr eeeeee dddooommm::: PPPeee rrr mmmiiissssss iiiooonnn iiisss gggrrr aaa nnnttteee ddd tttooo ttthhheee uuusss eeerrr cccooommmmmm uuunnniiitttyyy tttooo llliiibbbeee rrraaa llllllyyy

bbbooorrr rrr ooowww iiidddeeeaaa sss fffooouuunnnddd iiinnn ttthhhiiisss ttteeeccc hhhnnniiicccaaa lll rrr eee pppooorrrttt ... PPPllleee aaasss eee aaa ccckkk nnnooowwwllleee dddgggeee ttthhheee sssooouuurrrccc eee –––
SSSIIITTTAAARRRAAA TTTeee ccchhhnnniii cccaaalll RRReeepppooorrrtttsss... RRREEEFFFEEERRREEENNNCCCEEE::: SSSIIITTTAAARRRAAA SSSRRREEE///JJJAAANNN 222000000111

wwwwwwwww...sssiii tttaaa rrraaattteeeccchhh... cccooommm

444

It is easy to ensure end-user security and protection by closing a connection to a
secure system from a partition that deals with features having a need for secure
transactions. Most times, the partition that handles the not-so-secure information
processing can stay alive without the user having to go through with entering all of
the information again in a time-out based application. This is a useful feature to note
for providing a better user-experience on a website.

4.0 SEPARATION OF DATA TYPES

The primary advantage of separation of data types into a 2-partition application
design with a 3-navigation units rule on each one of these partitions as in [2] is to
render isolation of test data attributes. This is a useful feature while building secure
applications and transactions using the https protocol. Design of the form itself must
ensure that the different data types such as combo boxes, radio buttons, check
boxes, text areas and text entries are properly conceived with adequate properties
to withstand end-user usage. For example, text entry is normally used to provide
short input strings and is restricted by the MAXLENGTH tag in the definition.
However, it is more than likely that end-users enter large buffers full of data into a
text entry. The web-application must have the capability to handle such extremes
without crashing. For example: when you expect the user to type a 6 digit code, but
he enters a long string with more than a few 100 characters instead, how should the
application handle this without crashing the web server? It is always useful to test
using extreme testing strategies while an application is still in production keeping
ignorant or even malicious user perspectives.

Testing web-applications is not restricted to only testing the GUI from the browser.
One has to write queries and tweak the database itself to figure out the outcome of
data processing. The role of the test team has more to do with deciding a testable
database design using script based verification and validation procedures. A normal
tendency in web-application development is to have the commissioning of web-
applications separated into 2 stages. CGI scripts are normally used in developing
applications. Development servers are used to develop and test applications before
production runs of the application are ready to be deployed on a production server.
CGI scripts are simple programs that have to be tested in a safe environment. It is
important to shield scripts from the rest of the web content. Data separation also
entails separating the test data from the data that will be used in a real-life scenario
that is more idealistic. Separation of the test data is also useful to prevent loss of
information while testing scripts that are going to permanently replace data on the
database system. Duplicating and testing the scripts on copies of real-life data is a
better way to manage testing of CGI scripts than risking loss of data permanently!
Development servers are not part of the Internet and are also called the staging
servers.

SSooffttwwaarree RRee lliiaabbiill iittyy
EEnnggiinneeeerriinngg

SSS IIITTTAAARRRAAA TTTeeeccchhhnnniiicccaaalll RRReee pppooorrrtttsss

SSSIIITTTAAARRRAAA SSSRRREEE///JJJAAANNN 222000000111

 SSSIIITTTAAARRRAAA TTTeeeccchhhnnnooolllooogggiii eeesss PPPrrriii vvvaaa ttteee LLLiiimmmiii ttteeeddd
NNNOOOTTTEEE ooonnn IIInnnttteeelllllleeeccc tttuuuaaa lll FFFrrr eeeeee dddooommm::: PPPeee rrr mmmiiissssss iiiooonnn iiisss gggrrr aaa nnnttteee ddd tttooo ttthhheee uuusss eeerrr cccooommmmmm uuunnniiitttyyy tttooo llliiibbbeee rrraaa llllllyyy

bbbooorrr rrr ooowww iiidddeeeaaa sss fffooouuunnnddd iiinnn ttthhhiiisss ttteeeccc hhhnnniiicccaaa lll rrr eee pppooorrrttt ... PPPllleee aaasss eee aaa ccckkk nnnooowwwllleee dddgggeee ttthhheee sssooouuurrrccc eee –––
SSSIIITTTAAARRRAAA TTTeee ccchhhnnniii cccaaalll RRReeepppooorrrtttsss... RRREEEFFFEEERRREEENNNCCCEEE::: SSSIIITTTAAARRRAAA SSSRRREEE///JJJAAANNN 222000000111

wwwwwwwww...sssiii tttaaa rrraaattteeeccchhh... cccooommm

555

5.0 MISCELLENEOUS POINTS

Command line debugging of scripts is a recommended way to debug instead of
accessing them from a web server. Those of us who are schooled with Unix, as
background will immediately acknowledge the importance and challenges in debugging
from command lines! It is much faster and easier to catch syntax errors in scripts
when they are executed from command lines. Scripts written using Perl have flags (-
w) to warn about code that could be potentially dangerous. The w flag is saving
grace. Testing scripts from command line have the benefit of displaying the output
on the console rather than directly sending it to the Web server. HTML that is being
generated by the script can be validated for correctness. After the scripts are tested
from the command line and are ensured to provide the intended features, testing
using the web server is advised. These scripts are now “trusted scripts”. One other
way to test scripts is to use copious quantities of print statements to throw actual
logs of execution details.

Irregular execution of trusted scripts through a web server is normally due to either
inadequate permissions when a 403 Forbidden message is indicated or a 500 Server
Error. A 500 Server Error is encountered when the server expected to receive
something from a script and it did not get it. Normally, the server error log will
contain the actual error recording. This log is normally under the home directory of
the server and can be examined as a text file. Server Misconfiguration errors are
due to a failure of the script to include a blank line between the end of the header
and the beginning of the actual content. HTTP requires a blank line be included
between the header and the content to indicate where the header ends and where
the content begins.

When script errors occur, the server normally provides feedback instantaneously.
Logic errors are harder to track down and fix. It has been useful to use the 3-
navigations Star topology rule with a 2-partition engagement for application design.
Java server pages behave in a peculiar manner when you interrupt their full
execution by trying to execute options that are displayed partially as the page is
getting loaded. Run time errors occur which are otherwise not harmful. The solution
for run time errors is to let the “.jsp” file execute completely. And last but not the
least, when you make changes to an html or an ASP file that generates html and
put it on the staging server, don’t forget to refresh or re-load the page! You might
have made the changes to the html, but in order for it to render on the browser a
refresh is a must. When dealing with numerous changes while testing, it is not
uncommon to forget to do this and end up spending time looking and re-looking the
html endlessly.

REFERENCES:

[1] Study of site design of www.sitaratech.com
[2] Study of site design of www.citibank.com
[3] Software Reliability Engineering, IEEE Computer Society Press. McGraw-Hill.

1996

